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A method based on the Green’s Function Monte-Carlo approach
is used to sofve the integral equation for the scatiering wave func-
tion. The algorithm employed is explained for two-body scattering
and tested for cases where the exact solution is known. © 1995
Academic Press, Inc.

1. INTRODUCTION

There are hardly any interesting systems for which the wave
function is known in analytic form, Therefore one has to resort
to approximation schemes in order to obtain selutions of the
Schrddinger equation. Many of these algorithms have unknown
convergence properties that leave their application open to seme
reasonable doubt. In contrast, the Green’s function Monte-Carlo
(GFMC) method is in principle exact; its results are subject to
statistjcal uncertainty only that can be reduced to an arbitrarily
small value by increasing the computational effort. Of course,
such a powerful method has its own limitations; it is mainly
successful in the determination of the ground state of many-
boson systems. Another limitation, of a more technical nature,
exists; in order to be able to calculate the full Green’s function
of the system one deals with, the GFMC requires the availability
of a good initial approximation to the ground state wave func-
tion, called a guidance function, and a reasonable approximation
to the Green’s function, called a trial Green’s function, such
that the resolvent equation can be solved exactly.

In this paper we apply the GFMC method in the form that
originates with Kalos {1-3] and was later developed by Ceper-
ley [4] and Ceperiey and Alder [51. Tn a previous paper [6] a
medification of their method was introduced that proved effec-
tive in those cases where the kernel of the integral equation to
be solved turned out to be not strictly positive. Here we propose
a technique very similar to that of {6] for solving the integrat
equations for scattering. As a *‘proof of principle’” of our algo-
rithm, we apply it to several two-body model problems for which
the scattering amplitudes and phase shifts are exactly known.

The organisation of this paper is as follows: in Section 2 we
describe the algorithm in detail and give the essential differ-
ences with the GFMC method for bound states. Section 3 con-
tains the formulae for the scaitering amplitudes connected 10
the model problems we solve. The next section contains the
results of our numerical experiments, and in the final section
we discuss our resuits and draw some cenclusions.

2. THE MODIFIED GREEN’S FUNCTION MONTE-CARLQ
METHOD FOR SCATTERING

Let M be the hamiltonian of a quanitm system, then the
ground state i) can be projected out from any initial wave
function (1) that is not orthogonal to |#4) by the 8 — oo limit
of the imaginary-time evolution:

I96) ~ lim ~#7]4). (M

Equivalently, one may work in the time-independent representa-
tion and apply the resolvent G(E) = (H — E)”! many times
to the state |¢7). This procedure forms the basis of the standard
GFMC method for finding the energy of the bound state of a
many-body system.

Our approach to the scattering problem is to calculate the
resolvent G(E) by means of the GFMC method, i.e. by per-
forming random walks, and to use it in the standard way in a
calculation of the scattering amplitude or T-matrix:

T(E) = V + VGE)V. (2)
The operator V is, of course, the potential: & = Hy + V, H,

being the kinetic energy operator. The resolvent is constructed
using the well-known resolvent identities,

G(E) = G(E) + GJEXV, — VYG(E)
= GdE} + GENV, — V)GIE),
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where V, is the trial potential for which the corresponding
resolvent, G.(E) = (H, + V, — E)"!, is known. The iteration

G(E) = ZO GUE)K(EE), K(E)=(V, - WVGE), 4

will of course converge only if the norm of the kernel K(E) is
less than unity.

The random walks are performed most conveniently in coor-
dinate space, so we describe the procedure in x-language for
the case of one particle scattered by the local potential V(x).
We will work with the Laplace-transformed density matrix

plx x) = 5 G, X'5 ) )
It solves the Bloch equation
P, X) = px,x) + A [ dplx X IRK,X) (6)
with the kernel

K"v(xu’ xr) — [V"(X") - V(X")]ﬁu(x", xl)‘ (7)

(The variable A is the parameter of the Monte-Carlo algorithm
defined below.)

The scattering amplitude is calculated as the Fourier trans-
form of the expression (2) on the basis of the formula:

243

FE) =~ {f B eI V(" Yl
(8)
- f d*x e V() J d*x’ G(x, x')V(x’)e""Z’}.

(The quantity x' is the length of the vector x', ' is its third
component.) Apparently we encounter terms in the integrand
that are oscillatory. As the standard way of applying Monte-
Carlo techniques relies on the interpretation of (part of) the
integrand as a probability distribution, some modification is
needed. The modification applied here consists of treating inte-
grals of the form 7 = [ dx f(x)3p(x)/f dx f(x) such that | f(x)|
is interpreted as a probability distribution. Then [ is evaluated as

1= [ax| feoleyco / [ axlpeole @
to be estimated in the Monte-Carlo fashion as

(10)

X I3
. 2 eiﬁxk]w(xk)/g P
k=1 &=}
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where the points x, are sampled from a population with den-

sity | f(x)].

Now we describe the algorithm in some detail (see also [6]):

{a) basic parameters are chosen: the mean imaginary time
step A and the scattering energy E, from which the momentum
k = V2mE can be derived;

(b) In a sphere of radius R, a set of points is sampled
from a distribution |V(x")] with phases equal to #%(x") =
kxj = kz' corresponding to the initial state e, All points are
assigned a multiplicity. In the initial population it is set equal
to unity: M™(x'y = 1, ¥x'. (The procedure of cutting the -
potential is applied for practical reasons. For short-range inter-
actions it leads to an approximation that can be improved at
will if sufficient computational effort is spent.)

(¢) To each point x" in the initial population diffusion is
applied; i.e., it is subjected to Brownian motion corresponding
to the density matrix p, defined as

32
po(x, X'; B) = (2 B) exp(—ﬁ(x—x)z) (11)

this diffusion corresponds to the free motion of particles in the
imaginary time, d/o = Ay

A Laplace transformation is carried out by sampling the
imaginary time 8 = it from the distribution (I/A) exp(—B/4).
This gives

w d)
po(x,x') = ju Ege'”"’pu(x, x'; B). (12)

By this diffusion a new generation of points X is produced.
In order to construct the new generation, new points X with
multiplicity M(x} = M®(x")-my are created, according to
the rule

Gtr * '$E _
o =§ }—ﬁi—)] / Bol%, X'). (13)

XX

Here we use for the trial Green function the partial wave decom-
position. In our calculations G, is the Green function for the
square well; see the Appendix. The new points have phases
o(x) = 8M(x") + &, with

8 = Im(Gulx, x's EY/Re[Giolx, X3 E)). (14)
The occurrence of pp, the Laplace-transformed density matrix
given by

exp(—V2m/Ax — x'), (15)

PD(X X) 2 Alx 1

is required as it must compensate for the diffusion in the first
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step from {x'} to {x}. The **new’’ points thus created correspond
to the first iteration of Eq. (6). Next “‘intermediate’” points are
created with multiplicity m; given by

m; = AK{x, xppix, X', (16)

where

qu(x x5 E)

Ki(x,x") = [Vi(x) — VX)) a7

If m; does not vanish, the point x is added to the initial population
with multiplicity M, = M- m,; the phase of the point x is
equal to

w, Kl(xi x') < 0,

18
0, Kix,x)>0. (18)

5,‘=5,-;!d+5ﬂ+{

Intermediate points correspond to the second integral in Eq.
(8). This process is continued until eventually all inittal and
intermediate points are transferred to the new generation.

(d) Inorder to achieve good statistics, the whole procedure
is repeated a number of times, say N. The full scattering ampli-
tude is estimated by combining the points in the initial genera-
tion, corresponding to the distribution Vi, and the new genera-
tion that corresponds to GVily.

In the case of S-wave scattering this amounts to {see Eq.
(8)) the following Monte-Carlo summation

fOEY = - = 12 JolkxYe ™
(19)

+ 2 jolkx) V(x)Mxe“f‘x}
for the nth estimate. The final result is obtained by averaging:

N
B = %Zﬁ’(m 20)

A remark about the convergence of the Born series is appro-
priate here: because the convergence depends crucially on the
magnitude of the kernel X, the use of a trial potential V, that
is as close as possible to the true potential V, is required to
speed up the convergence of the algorithm. In our practical
calculations described below, we employed the square well as
the trial potential.

3. SOME EXACTLY SOLVABLE CASES

It is obviously very important for a test of the correctness of
the aigorithm to employ some potentials for which the scattering
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states are known analytically. Furthermore, we need a suitable
trial potential V. In this work we use the square well:

~Vy, 0=|x|=R;

0, [Xl>RT- (21)

Vidx) = {

In our practical calculations we solve the scattering equations
for one partial wave at a time, so we consider partial-wave
equations, (Note that this is not a limitation or special case;
as the centrifugal barrier increases, the scattering amplitude
decreases, so in general the lowest partial waves are computed
more accurately than the higher ones, if one uses the same
statistics for all values of the angular momentum /.

As it is straightforward to write down Green's function in
terms of the regular and irregular solutions of the Schrédinger
equation and the latter are well known for all [-values in case
of the square well, we give the relevant results in the Appendix.

In order to check our aigorithm we employed two interactions
for which the S-wave phase shifts are known [7]. These are
the exponential potential:

V(r) = Ve (22)
and the Poschi-Teller potential:
Vi{r) = W, cosh™¥(r/d). (23)
If we write V; as
= z4/(2m - 4d7), (24)

then the S-wave S-matrix for the exponential potential is

S(E) = (2)_ * I(l - Zldk)fzzdk(zo) 25)

(1 + 2zdk)J_z.m¢(zﬂ)

(J, is, of course, the ordinary Bessel function).
If one writes in the case of the Poschl-Teiler potential,

AA— D)

W, = -
o Yz {26)
then the S-wave phase shift is given by

5 = E + arg V' (idk) exp(—idk log 2) @n

F((z\ + 12 + @dkd 2T (1 — M2 + idki2)
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FIG. 1. The phase shifts for the exponential potential. The parameters of
the potential are V; = —7,d = 1.1.

Our results are shown in Figs. | and 2. The parameters for
the cases considered were: in units such that i = m = 1 the
sirength V; of the exponential potential is —7 and its range
parameter d = 1.1, faor the Poschl-Teller potential we took
Wo = —1,d = 4. The curves in the figures are the exact S-
wave phase shifts, the points with error bars are the results of
our Monte-Carlo calculation. It is clear that good agreement is
obtained, even when the phase shifts are large.
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FIG. 2. The phase shifts for the Poschl-Teller potential. The parameters
of the potential are W, = —1,d = 4.
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APPENDIX: SQUARE-WELL GREEN’S FUNCTION

Consider a square well with radius R and depth — V. Let E
be the energy of our stationary state and %, the corresponding
value of the momentum. The wave number inside the well is
denoted by K. We use the notation k{"'(kr) for the spherical
Hankel function that behaves asymptotically as a purely outgo-
ing (incoming) spherical wave.

Then the regular solution for angular momentum / of the
square-well Schridinger equation is denoted by J,(r; E). Inside
the potential it is

M Ey=Aj(Kr), 0=r<=R (28}
Outside it is given by
A E)y = — é{hi"(kr) = SUEYH T (knl, (29)

where S;(E) is the S-matrix of the square well. The irregular
solution inside the potential,

H{ (r; E) = B jKr) + CngKr), (30)
is a hinear combination of a spherical Bessel and a spherical
Neumann function. The coefficients A, B,, and C; are deter-
mined by the requirement that the regular and irregular solutions
Jy and H;, respectively, and their derivatives be continuous at
r = R I we denote by » {r,) the smaller (larger} of the two
variables r and r', then the r-space resolvent of the square well is

G(r',r  E) = —kJ(r; EYH{M(r, E). 3n
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